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Abstract 

Various Hamiltonian actions of loop groups G and of the algebra diff t of first order differential 

operators in one variable are defined on the cotangent bundle T*G. The moment maps generating 
the diff~ actions are shown to factorize through those generating the loop group actions, thereby 
defining commuting diagrams of Poisson maps to the duals of the corresponding centrally extended 
algebras. The maps are then used to derive a number of infinite commuting families of Hamiltonian 
flows that are nonabelian generalizations of the dispersive water wave hierarchies. As a further 
application, sets of pairs of generators of the nonabelian mKdV hierarchies are shown to give 
a-commuting hierarchy on T*G that contain the WZW system as its first element. 

Keywords: Symplectic geometry; Integrable systems; 
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O. Introduction 

Integrable 1 + 1-dimensional systems have long been recognized as closely connected 

with loop algebras (see e.g. [AHP, DS, RS, FNR] ). The r t l e  played by loop g r o u p s  in 

the Hamil tonian setting is in a sense more fundamental, but also more subtle [DJMK, 

SW, RS, W l ,  W2, H, HK1 ]. For many integrable systems the underlying phase space 

may be taken as the cotangent bundle T * L G  of  a loop group LG.  However, the symplectic 

structure is not necessarily the canonical one; it may more generally be a member of  
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a 1-parameter family obtained by shifting the canonical form by a multiple of the 2- 
cocycle on the corresponding loop algebra Lg associated to an Ad-invariant metric on 
g. It is this shift that leads to a phase space structure involving the centrally extended 
loop algebra. Reduction of T*LG under left or right translations leads to the space 
LG/G = {Maps S 1 ~ G}/{constant loops} (a-coadjoint orbit in the dual Lg A* of 

the centrally extended loop algebra), with the natural symplectic tbrm related to the 2- 
cocycle (cf. [PS, HI ). By combining such reductions with the moment maps generating 
the natural action of diff S 1 on LG and Lg, one obtains Poisson maps relating integrable 
hierarchies of the KdV and nonabelian mKdV type [Ku2, HK1, HK2]. In this context, 
the moment map provides a nonabelian generalization of the well known Miura map. 

In the present work we show, using the moment maps generating certain infinitesimal 
Hamiltonian actions of the algebra diff I of first order differential operators in one variable 
on the nonreduced phase space T*LG, how some new, nonstandard Lax equations 
determining infinite commuting families of flows are derived. These systems are related 
to the integrable hierarchy of dispersive water wave (DWW) equations [Kul] in a way 
analogous to the relation between the nonabelian modified KdV and KdV hierarchies. 
They will be referred to here as the o-mDWW (g-modified DWW) systems. The relevant 
phase space for the latter is the dual (Lg • Lg) A* of the centrally extended direct sum 
of two copies of the loop algebra Lg. (Alternatively, nonperiodic, rapidly decreasing 
boundary conditions may be allowed, in which case the corresponding groups and 
algebras will denoted G and ~, respectively.) A second version, involving a different 
Hamiltonian action of diff 1 on T*LG, leads to systems on the phase space (Lg q-Lga)* 

(or (~q-~)A. ), where the subscript A denotes abelianization, and the sum is semi-direct. 
These will be referred to as the g-m2DWW (second g-modified DWW) systems. 

The relevant family of symplectic structures on T*LG (or T 'G)  is defined in Section 
1.1. The rest of Section 1 is devoted to a systematic study of the various Hamiltonian 
actions of G on T* G, (~@~) A. and (~q-~a) A., as well as the that of the group ~)1 N D0 
corresponding to diff I . The associated moment maps are derived and shown to torm 
commuting triplets of Poisson maps into (~ • ~) ̂ * (or (~ q- ~A) A. ) and diff 1 A.  where 
diffl ̂  is a member of a 3-parameter family of central extensions of the algebra diff I. 
Using these Poisson maps in a way analogous to the generalized Miura map, various 
integrable systems associated with the dispersive water wave hierarchy are constructed 
in Section 2. Since the KdV and nonabelian mKdV hierarchies may be recovered by 
restricting every second flow to a-certain invariant manifold, the DWW and ~t-mDWW 
systems may be viewed as generalizations of the KdV and nonabelian mKdV systems, 
which are more usually defined on the phase spaces (cliff Sl) n* and ~^* (or LI~A*), 
respectively. The Poisson maps constructed in Section 1 are recast in Section 2 in 
the language of differential algebras, Hamiltonian matrices and Harniltonian maps. In 
addition to the DWW, g-mDWW and ~-m2DWW hierarchies, we also obtain integrable 
hierarchies on T*LG via pullbacks under the appropriate Hamiltonian maps. As a further 
application of these results, we show that there exists a natural notion of higher WZW 
systems associated to pairs of KdV systems that are related to the separated left and 
right translational modes of the WZW system. 
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1. Hamiltonian group actions on T*¢~ 

1.1. Symplectic structures on T*G 

Let G be a Lie group with Lie algebra g on which an Ad-invariant scalar product 
: O x 0 ---* R is defined. We denote by G the group of smooth maps g : ]R --* G, 

with pointwise multiplication, and by ~ its Lie algebra, consisting similarly of maps 
X : ]R ~ g. If the periodicity conditions g(o- + 27r) = g(o'), X(o" + 27r) = X(o') are 
added, G and ~ become the loop group LG and loop algebra LO, respectively. For the 
nonperiodic case we also require g E G, X E ~ to satisfy L 2 boundary conditions such 
that the integral 

(X,Y) := /13(X(o') ,Y(o-))atr ,  X, Y E'~, (1 .1)  

converges over JR, defining an Ad-invariant scalar product on ~, and the same integral 
converges when the pair (X,Y) is replaced by (g'g-l,h~h-l) for any pair of group 
elements g, h E G. For Lg the integral in ( 1.1 ) is understood as evaluated over a period. 

The scalar product/~ gives an identification between [t and its dual space 1~*, while 
( , ) gives an identification of ~ as a dense subspace of ~*. For our purposes, when 
speaking of ~*, we shall really only mean elements in this dense subspace, and hence 
the same notation 

(u,x>:= f (12) 
will be used to denote the dual pairing ~* x ~ ~ R. The 2-cocycle 

c : g x g - - , ] R ,  

c(X, Y) := (X, Y'), Y' := dY/dtr, (1.3) 

is used to define the centrally extended algebra, denoted ~^ (or Lg A), identified as the 
space ~ + • (respectively, Lg + R), with Lie brackets: 

[(X,a),(Y,b)] :=(tX, YI,(x,Y')), X, YE~,a,  b E R .  (1.4) 

The dual space ~A* is again identified with ~* + R ,-~ ~ + R, with dual pairing 

((U,a) ,(X,b)):=(U,X)+ab,  (U,a) E~^* , (X ,b )  E~ "^. (1.5) 

Denoting by ad~ and Adg the coadjoint representations of elements X E g, g E (~ in the 
algebra and group, respectively, the extended coadjoint representation on ~^* is given 
by the formulae: 

a~-d~x,a) (U, b) = (ad~U + bX t, 0) ,  (1.6a) 

a~-dg(U, b) = (AdgU + bg' g -1 , b) . (1.6b) 
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Although the centrally extended group G^ ~ G with Lie algebra ~^ is a nontrivial line 

or circle bundle over G (cf. [PS] ), its action on ~^* depends only on the projection of 

elements ~ E G^ to their image g E G, as indicated in (1.6b). 
From (1.4), (1.5), the Lie Poisson bracket on ~A* is determined by the formula 

{( - I ( X , a ) ) ,  ( • I (Y,b))} l (v ,e)  = (U, [ X , Y ] )  + e c ( X , Y ) ,  (1.7) 

where ( • [(X,a))  denotes the linear functional on ~^* with value ((U,e),  (X ,a) )  at 
(U, e) E ~^*, corresponding to pairing with the element (X, a) E ~^. 

Now consider the cotangent bundle T 'G,  identified through left translations with the 
product G x ~*. Denoting a typical element by the pair (g E (7,/z E ~*), the canonical 
symplectic form on T*G may be expressed as 

o~o = - 6 ( I z ,  g - 1 6 g )  , (1 .8 )  

where 6 denotes the functional differential and g-LSg is the left invariant Maurer-Cartan 
form on G. In the following, a more general family of symplectic forms will be needed 
(cf. [H] ), defined by the formula: 

wk := -S(/z ,  g-16g) + l k (6(g- lg ' )  A, g-16g ) , (1.9) 

where k is a real parameter. Here, g-]g1 is viewed as the element of ~ whose value 
at ¢7 E S 1 is obtained by left translation of the tangent vector gl(o-) E Tg(~)G to the 
identity e E G. It is shown in [H] that wk is closed and weakly nondegenerate. The 
corresponding Poisson brackets are defined by the formulae (cf. FT] ): 

{ f l , f 2 }  = 0 ,  (1.10a) 

= f 6 f ( g X ) d o ' ,  (1.10b) {f, ( IX>}l<g,#) t 

{< • Ix>, < • IY)}l(g,#) =-( tz  + kg-'g', [X,  Y]) + kc (X ,  Y ) ,  (1.10c) 

where X, Y E ~; f ,  f l ,  f2 are functionals on G x ~* depending only on the first factor 
g E G, ( • IX) is the linear form on the second factor corresponding to the algebra 
element X E g and the RHS of (1.10b) signifies evaluation of the functional differential 
6 f  on the vector gX E TgG obtained by left translation of X E ~ ~ TeG to g E G (i.e. 
evaluation of the corresponding left invariant vector field on f ) .  The Poisson brackets 
( i .10a-c) follow from the following formula for the Hamiltonian vector field Xn of an 
arbitrary smooth functional H defined over T 'G:  

XI4 = + iz + kg-l  g', ~ - (1.10d) 

(so that X~t J wk = 6( H)  = (6H/6g, 6g) + (6H/6tx, 6tz) .) 

1.2. Hamiltonian G x G action on T*G 

The canonical lift of the right translation action of G to T*G is given by: 
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Rh- l  : (g, tz) , , (gh- l ,h ixh -1) , (1.11) 

where the inverse h - l  is used to make this a left action. This action leaves the symplectic 
form wk invariant for all k. To lift the left translation action so as to preserve wk, it is 
necessary to modify the usual canonical lift by defining: 

Lh: (g, lx) ,  , (hg, t z + k g - l h - l h t g )  . (1.12) 

Substitution in eq. (1.9) shows that this does leave wk invariant and composing these 
maps shows that (1.12) defines a left action, commuting with the right translation action 
( 1.11 ). The following result summarizes the Hamiltonian properties of these actions. 

Proposition 1.1. The R and L actions (1.11), (1.12) are generated in terms of Hamil- 
tonian flows by the moment maps: 

j L : T .  ~ , ~ . ,  jL:  (g, t z ) '  'gtzg -1,  (1.13a) 

J~:T*G , ~* ,  J f f : ( g , / ~ ) ,  , - t x + k g - ' g ' ,  (1.13b) 

respectively. The functions obtained by pairing these maps with elements of ~ Poisson 
commute with each other, but the maps are nonequivariant, having as 2-cocycles kc and 
-kc ,  respectively. Thus, the Hamiltonian generators 

J~, := ( j L , x ) ,  JR x := (J~,X) (1.14) 

satisfy the following Poisson bracket relations: 

{J~, J~} = J~x,v] + kc(S,  r ) ,  (1.15a) 

{J~, J~} = Jtx, - kc(X, Y) , (1.15b) 

{J~,J¢}=O . (1.15c) 

Proof Differentiating the actions (1.11), (1.12) along a 1-parameter subgroup {h(t)  = 
exp ( - tX) } ,  we find the following representations of ~ in terms of functional vector 
fields on T'G: 

x~  = <gx, a l  Sg) - < I x ,  ~,1, 818~,) , 

x~  = - (xg,  6/8g) - (kg~l X' g, 81~ , )  , 

(1.16a) 

(1.16b) 

where the first terms (gX, 8/8g) and (Xg, 8/8g) denote, respectively, the left and right 
invariant vector fields on the first factor G in T*G = G x ~'*, with value X at the identity 
e E (3, and the second terms, of the form (~7(g, lx),6/61~), denote the vector field on 
the second factor ~* having value r/(g,/z) C ~* at the point (g,/z).  Evaluating the inner 
products with wk gives 

X R J o9 k = ~(tz - kg- lg  t, X) ,  (1.17a) 

X~ J o~ k = -8(gtzg -1 , X) , (1.17b) 
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which shows that eqs. (1.13a,b) give the moment maps generating these actions. To 
verify the Poisson bracket relations (1.15a-c), we compute: 

{J~, J~} = X~(  J~) = (gtzg - l  , [X, Y]) + k(X, Y') , 

{ j R  jR} = x R ( j ~ )  = ( - t z  + k g - l g  ', [X, Y]) - k(X, Y ' ) ,  

{ JL, jR} = xL  ( jR)  = 0 .  [] 

Proposition 1.1 implies that the map 

j~+R : r * ~  , (~+0 ~)* ,  

J~R : (g, lx) .  ~ ( g l z g - l , - t z  + k g - l g  ') (1.18) 

to the dual of the direct sum Lie algebra ~ ~3 ~ is a nonequivariant moment map 
generating the product of the left (L) and right (R) translations, the nonequivariance 
given by kc LR, where c LR is the 2-cocycle 

c L R ( ~ e ~ ) x ( ~ e ~ )  ,R,  

cLR( ( x1 ,Y~) , (X2 ,  Y2) ) : =  ( X 1 , X 2 )  - -  (Y1,YJ) • (1.19) 

The centrally extended algebra ($ ® ~)A associated with this cocycle is identified as 
the space $ + $ + •, with Lie bracket 

[ (X t ,Y~ ,a l ) , (X2 ,Y2 ,a2 ) ]  = ([Xl,X2], [YI ,Y2I ,(XI ,X~) - (I6, Y~)) . (1.20) 

Again, (~ • ~)A is identified as a dense subspace of the dual space (~ ® ~)A* through 
the pairing 

((U, Va), (X, Yb)) := (U, X) + (VY)  + a b ,  (1.21) 

(U,V,a) C ($ ff) g)A*, (X, Y, b) C (~@~)A. 

The extended coadjoint representation on (g ff~ ~)A* is given by the formulae 

a-d~x,y.b ) (U, V,a) = (adieU + aX' ,  ad~V - aY', 0 ) ,  (1.22a) 

aAd~.h) ( U, V, a) = ( ad~U + ag' g - '  , a d ~ V  - ah'h - l ,  a) , (1.22b) 

where again, the centrally extended group (G x G)A __, G x G acts through the projection 
of any element ( g , h )  E (G x G) A to its image ( g , h )  in G x G. 

From Proposition 1.1 we then have: 

Corollary 1.2. The map 

jLR: T*G , (~@~)A*, 

J~R : (g, tZ) ' ~ (gtzg - l  , --IX + k g - l g  ~, k) (1.23) 

is an equivariant moment map with respect to the extended coadjoint action ( l.22a, b), 
generating, the product action L x R of  G x G on T*G. 
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The Lie Poisson bracket on (~ ~ ~)^* is determined by: 

{( • I(X~,~,bl)) ,  ( • I(X2,~,b2))}l~.,~,o) 

=(U, [XI,X2]) + (V[YI,Ifi]) +a((X1,X~)  - (Y,,YJ)), (1.24) 

where ( • ] (X, Y, b)) again denotes the linear functional on ( g ~ )  ^* corresponding to an 
element (X, Y,b) E (~ff)~)^. The moment map 3~ R is thus a Poisson map with respect 
to the Poisson brackets (1.10a-c) associated to the noncanonical symplectic form wk. 

1.3. Hamiltonian action of  G ~< -gA on T*G 

Viewing ~ as an additive group, denoted ~A, upon which G acts via the adjoint 
representation, we may form the semi-direct product G D< ~a, with group multiplication 
defined by 

(~  ~ ~a) × ( c  ~ ~A) --~ C ~< ~A, 

(g ,X)  x (h ,Y )  := (gh, X +gYg - l )  , (1.25) 

g, h C G, X, Y E'gA . 

The corresponding Lie algebra is the semi-direct sum ~+ga ,  identified as a vector space 
with g + 0, with Lie bracket 

[(X1,YI) , (X2,Y2)]  := ([Xl,X2], [X1,Y2] - [X2,YI]). (1.26) 

The dual space (~ + ~A)* is again identified with g + gA, with dual pairing 

((U, V), (X, Y)) := (V,X) + (U, Y), (1.27) 

(U,V) E (~4~A)*, ( X , Y )  E'~4"~A • 

[Note the reversal of conventions relative to (1.21).] The coadjoint representation of 
elements (X, Y) C ~ 4- ga, (g, Y) C G ~< ~a in the algebra and group is given by 

ad~x,v) (U, V) = ( [ X, U],  [X, V[ + [ Y, U[ ) ,  (1.28a) 

Ad~g,v) (U, V) = (gUg -~ , gVg-~ + [ Y, gUg -~ ] ) .  (1.28b) 

The following action of the additive group ~a on T*G is easily verified to leave the 
canonical symplectic form too invariant: 

A x : ( g ,  l t ) ,  , ( g ,  t x + ( g - l X g ) ' ) ,  X E ~ A .  (1.29) 

In the remainder of this subsection only the canonical symplectic structure on T*G will 
be used. 

Lemma 1.3. The "~a-action (1.29) is Hamiltonian, and is generated by the equivariant 
moment map jA : T*G ~ g*a defined by the formula 

j a  = gt g - l  (1.30) 
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(where the dual pairing (1.2) is applied to "~a "~ ~, ~*a ~ -~*') 

Proof Differentiating (1.29) along a 1-parameter subgroup { - t X }  with respect to t 
shows that the infinitesimal action is generated by the vector field 

X a = - { ( g - l X g ) ' ,  6/6tz} . (1.31) 

Taking the inner product with too gives 

X a J wo = - ( g - l X g ,  (g-lt3g)'} 

= - 6 ( X ,  g , g - l }  , ( 1 .32 )  

showing that the flow is generated by the Hamiltonian - J x  a, where 

jA :.~ ( jA ,  X) . (1 .33)  

The equivariance follows from the fact that, for any X, Y E ~a, the functions ja ,  j a  
depend only on the first factor g in (g,/~) C T 'G,  and hence, by (1.10a) they Poisson 
commute. [] 

We may now compose this action with the left translation action (1.12) for k = 0, 

L h : ( g ,  tx ) ,  , (hg,/x) , (1.34) 

to obtain an action LA : (G t,< ga) X T*G ~ T*G of the semi-direct product group 

I:< ~a defined by: 

LA(h,X) : (g,I  ~) ~ ~ (hg, t x + ( g - l h - l X h g ) ~ ) .  (1.35) 

It is easily verified that these maps compose correctly to define an action of G ~< ~a 

on T*G and, by Lemma 1.3 and the fact that the L-action (1.34) is Hamiltonian, the 
combined LA-action (1.35) is Hamiltonian as well. However, the resulting moment map 

jLA :T*G ' (~- -F~A)* , 

jLA : (g, lz) ~ ~ ( j a ( g ,  t z ) , jL (g , l . t ) )  = (g 'g- l ,g t zg-1)  (1.36) 

is no longer equivariant, as indicated in the following 

Proposition 1.4. The moment map jLA generating the G ~< "~a action is nonequivariant, 
having as cocycle: 

cLA : ( ' ~ - ~ A )  X ( ~ - ~ A )  -'---"+~, 

cLA( (x I ,Y1) ,  (X2, Y2) ) := (X1,Y~} - (X2,Y[} • (1.37) 

Thus, the Hamiltonian generators 

LA J(x,r) := {gtzg -1, X) + (g,g-1, y},  X C ~, Y E ~A,  1.38) 

satisfy the following Poisson bracket relations: 

ILA jLA l LA ~(xl,r,), (x2,v2)J = J(tx,,x:l,lxt,r:l-txz,rtl) + (Xl, Y~} - (X2, YI t} • 1.39) 
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Proof Eq. (1.39) reduces to the following relations: 

{j~, jyL} /~ = J[x, r l ,  (1.40a) 

{ 4 ,  jyA ) -- jA - IX, Y] + (X, Y~), (1.40b) 

{ jA, j a  } = 0 .  (1.40c) 

Eq. (1.40a) is the particular case of eq. (l.15a) with k = 0, while eq. (1.40c) is implied 
by Lemma 1.3. Eq. (1.40b) is verified directly: 

{JL, j A } = - - X A (  J~¢) 

= ( (g - lyg) , ,  ~/atx) ((g#,g-l ,  X))  

= (g ,g- l ,  [X ,Y ] }  + (X,Y') ,  

where eq. ( 1.31) was used in the second line. [] 

The non-equivariance of the map jLA : T*G ~ (~-~ "~a)* with respect to the group 
action (1.35) may be expressed in finite form as: 

jLA o LA(h,x) = Ad~h,X ) o jLA -b c LA(h, X) , (1.41 ) 

where the group 1-cocycle C t'a : G ~ ~A ---* (~-[-ga)* is defined by the formula: 

cLA(h ,X)  : =  ( f f h - l , X  t -  [ f f h - l , x ] )  . (1.42) 

The cocycle relation 

C LA (gh, X + gYg-1 ) = Ad~g,x)CLa (h, Y) + C LA (g, X) (1.43) 

is verified by applying the Ad*-action (1.28b) to the definition (1.42). 
Using the algebra 2-cocycle c TM given in eq. (1.37), we define the centrally extended 

Lie algebra (~q- ~A) ̂  as the space g + 1~ + R, with Lie bracket 

[ (X1 ,YI ,a l ) ,  (X2,Yz,a2) ] 

= ([XI,X2], [X1,1~] - [Xz,YI],(XI,Y~) - (X2,Y[}) • (1.44) 

A dense subspace of the dual (~#~a)  A* is again identified with (~+~a)  ^, with typical 
elements denoted again (U, V,a). The notational conventions are such that the pairing 
of eq. (1.21) is replaced by: 

( ( v ,g ,a ) ,  (X,Y,b))A := (V,X) + (U,Y} +ab ,  (1.21') 

(U, Va)  E ( ~ A )  A*, (X,Y,b)  E (~e~A) A. 

The extended coadjoint representation on (~ q-~A) A* is then given by the formulae: 

a-'-'d~x,Y,a)(U, Vb) = ( IX, U] + bX', [X, V] + [Y,U] + bY',O) , (1.45a) 

ad~u-'r) (U, V,b) = (gUg -1 + b f  g- l ,gVg -1 + [Y, gUg -1 ] 

+bY' - b[ f g -~ , Y] , b) . (1.45b) 
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From Proposition 1.4 then follows 

Corollary 1.5. The map 

jLA :T*G ~ ( ~ ) ~ A )  A* , 

jLA . ( g , # ) ,  ~ (g'g--l,gtzg--1, 1) (1.46) 

is an equivariant moment map with respect to the extended coadjoint action (1.45a, b), 

generating the action LA : ( G ~< gA) X T*G --~ T*G defined by (1.35). 

The Lie-Poisson bracket on (~ 4-gA) ̂ * is determined by the formula: 

{( " I ( X l , Y l , b l ) ) A ,  ( " [(X2,Y2,b2))Al(U,V.a) 

= ( V [ X 1 , X 2 ] ) + ( U , [ X 1 , Y 2 ]  - [X2, Y 1 ] ) + a ( ( X I , Y J ) -  (X2, Y()) , (1.47) 

The moment map ]ca is thus a Poisson map with respect to the canonical Poisson 
brackets on T*G given by setting k = 0 in eqs. (1.10a-c). 

1.4. Hamiltonian action o f  791 ~< 79o 

Let Dl := Diff S 1 (resp. Diff IR) be the group of diffeomorphisms of S 1 (resp. IR) 
and 790 := b r× (S 1 ) (resp. 5-x (IR)) the space of smooth non-vanishing functions on S I 
(resp. R),  viewed as an abelian group under multiplication. Using the natural action of 

791 on D0, 

o:790--+790, o ' : f ,  ~ f o o  --1 , o'E791 , (1.48) 

we define the semi-direct product 791 ~< D0, with group multiplication 

(791 ~ 790) X (791 ~ 790) 

( o ' , f l )  × (0"2, J72) I 

0"1,0"2 E 791, 

,D1 ~< Do, 

'(0"1 °O'2, f l  f 2 ° o ' l l ) ,  

f l , f 2  E790. 

(1.49) 

(~-, f )  : 5- , 5 - ,  (~-, f )  • h ~ f h o ~-1.  (1.50) 

The Lie algebra of 791 ~< 790 may be identified with the space diff I of differential 
operators of order < 1, with typical elements a d/do- + / 3  E diffl denoted by pairs 
(ce, 13) E F ® 5-, and the Lie product given by commutation: 

= - - - J , )  (1.51) 

The dual space diffl* is identified with the space 5- ® 5- through the dual pairing 

The natural action of D1 ~< 790 on the space 5- of smooth functions on S l (resp. IR) 
is: 
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diff 1. x diff I --~ JR, 

((v,w), (~,/~)) := (us) + (w,/~), (1.52) 

(v ,w)  E diffl*, (a,  fl) C diffl , 

where the integrals 

f <w,e> := f w(,,)e(,,),,,, (153) 
are taken over the appropriate domain (S 1 or R) ,  and the functions a, fl, u,v C ~" are 
assumed to be integrable as required. 

Let 

O : ~ x  x R x - ~ ,  G,  (1.54a) 

:]~x x R  x ~ G ,  (1.54b) 

O(a ,b)  :=Oo(a)Ol(b) ,  ~ ( a , b )  : = ~ 0 ( a ) q b l ( b ) ,  a, b C ~  x (1.54c) 

be a pair of  homomorphisms into G from the direct product group R x x R x formed 
from two copies of  the multiplicative group R x of  non-zero reals. The derivatives 
O.[(1,1 ) E Hom(]R2,~l), ~ . [ (L l )  E H o m ( ~ 2 , g )  at the identity element (1, 1) may be 
expressed as 

O.[(~ j ) (x ,y )  =xOo+yO~, t~O.l(1,1)(x,y) =x~bo +ytb~ , (1.55) 

where the elements 0o, 0~, ~bo, ~bl E g satisfy 

[ 00 ,01 ]  = 0 ,  [t~0,t~l ] = 0 .  (1.56) 

We define a-class of  right 19~ ~ 19o actions on T*tT, parametrized by (k ,O, , / , ) :  

, T ' G ,  

, (~ , /2 ) ,  (1.57a) 

(~ ,  f )  : T*G 

(a,, f )  : (g, t*), 

where 

:= 01 (~")Oo(f o ~-) (g o ~') ~o (f o a') -Ig'l (a-') -l, (1.57b) 

/2 := ~"qbl (o'/) ~0 ( f  o ~-) (/z o o ')~0 ( f  o ~') --lt~ l (~r") --1 

÷ k ~ " ( f '  o or)t~ 1 (~ ' )  q~0 ( f  o ~') (g o ~') -100(g o ~ ) ~ 0 ( f  o ~-) -- ltibl (~.l) --1 

+k-~Tqbl(~r')~o(f  o ~ ' ) ( g o o ' ) - l O l ( g o ~ r ) ~ o ( f o ~ r ) - l ~ l ( ~ r ' ) - I  (1.57c) 

Although this action appears complicated at first sight, it is actually very simple when 
decomposed as a product of  the D0-action: 

( 1 , f )  : ( g , / z ) ,  + ( Oo( f ) g ~ o ( f ) - l , ~ o ( f ) l z ~ o ( f )  -1 

+ k f , ~ o ( f ) g - l O o g ~ o ( f ) - l )  (1.58) 
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and the Dr-action: 

(~', 1) : (g,/z) , (~,/2) (1.59a) 

defined by 

= Ol (~") (g o ~') (/)1 (~") -1,  (1.59b) 

# = b"qh (~")  (/z o ~-) q,~ (~-') -~ 

+k~-;cP l (~r') (g o ~') --101 (g o o ' ) O  1 (O") --1 . (1.59C) 

The D0-action (1.58) is just left translation (1.12) by the element Oo(f)  E G and 
right translation (1.11) by the element O0(f)  E G. The Dl-action (1.59a-c) is the 
cotangent bundle lift of the natural right action 

~ ' : G  , G ,  ~ ' : g ,  , g o3-, (1.60) 

composed with a "twisting" by the left translation action (1.12) of Ol (~./) E G and 
right translation (1.11) by ~l (~.1) E G. It is verified directly that the maps (1.57a-c) 
do indeed compose correctly to define a right DI ~ D O action. Moreover, by considering 
the separate maps that are composed to form (1.57a-c), it is easily verified that this 
action preserves the symplectic form (Ok on T*G. The infinitesimal action obtained from 
(1.57a-c) by differentiating the flow given by the 1-parameter group {exp[ - t ( a ,  fl) ] C 
D1 ~< Do} at t = 0 is represented by the functional vector fields: 

1 X(.,~) = X a + X°~, (1.61a) 

where 

X°~ := X~oo + X~4~o (1.61b) 

generates the Do-action (1.58), and 

X1, := - (ag ' ,  6/6g) - ((ate)l, 8/81z) + X~,o, + XR,4,, (1.61C) 

generates the Dl-action (1.59a-c). (In the above, we have chosen signs so that the map 
v defines a homomorphism to the Lie algebra of functional vector fields (a , /~)  - *  X(.,~) 

on T'G, rather than an anti-homomorphism. This means the flows generate the left action 
of D1 p< Do defined by replacing (~-, f )  in (1.57a-c) by the inverse (~.-1, ( fo~-)  -1 ) ). 
The Hamiltonian properties of this action are summarized in the following: 

Proposition 1.6. The action (1.57a-c) is Hamiltonian, with the I-parameter subgroups 
{exp[ - t (  a, fl) ] } generated as the flow of the Hamiltonians: 

J(a.I~)z) :=(jL,oLO,) + (jR,o/dpl) 

+ 1  ( (ajL ' jL) _ (a jR, jR) + (jL, flO0) + (jR, fldpo) • ( i.62) 

Thus, the map 



180 J. Harnad, B.A. Kupershmidt/ Journal of Geometry and Physics 16 (1995) 168-206 

J7 ) :T*G ,diffl*, J V : ( g , / x ) ,  , ( j o ,  f l )  (1.63a) 

defined by 

jo =/3(JL, 00) +/3(JR,  q~0 ) ,  (1.63b) 

= _/3(jL~, 01 ) - - /3(Jm, q~l ) + ~k (/3( jL, jL ) _ /3 ( jR ,  jR) ) ,  (1.63c) j1 

is the moment map generating this action. It is nonequivariant, satisfying the Poisson 
bracket relations: 

7) 7) 7) 

+k[/3( 0o, 0o) - /3(~o, ~o )] (/31, •) 
-~-k[/3(01,00) - /3 (~1 ,  ~0 ) ] [ (~1~, ~ )  - (o~2,/~]) ] 

+k[/3(Ol, Ol) - /3(~bl ,  ~bl ) ] (a], a~') . (1.64) 

Proof Let 

J~ := ( J ' , a ) =  J~',~,o), (1.65a) 

:= (jo, fl) = g(0,/~) 7) • (1.65b) 

To show that jo and f l  generate the Do and :D1 actions, respectively, we must verify 

X~ J Wk = - S J  1 , (1.66a) 

Jr  ok = - & ~ .  (1.66b) 

J~ and ~ may be expressed in terms of the left and right moment maps jL, jR as: 

j l  a L R I ( (cr jL, jL  ) (ozJR,jR)) = J~'o, + J~'~, + - , (1.67a) 

J°#: J~o o -4- J~o " (1.67b) 

Eq. (1.66b) is immediate from the form (1.61b) of .~# and eqs. (1.17a,b). Similarly, 
using the form (1.61c) of X 1, eq (1.66a) reduces to: 

--[(agt,  t3/6g) -4- ( (alz) t ,B/8tz)]  J OJk = ~----~¢5[(ojL,J L) -- (a jR , jR) ]  , (1.68) 

which is verified directly. The Poisson brackets (1.64) are equivalent to the relations: 

{ Jlal' Jla2 } = J(,~,~,~-~2,~; ) + k [/3( 01,01 ) -- J~( ~bl, ~b 1 ) ] (at1 , of~), (1.69a) 

{ j~, jo } = j~/~, -4- k [ /3 ( 01, 0o ) -/3(~bl,  ~bo)] (a',  f l ' ) ,  (1.69b) 

{ ~ t ,  J°~z} = k[B(Oo,  00) - B(~bo, ~bo)] ( i l l ,  fl~) • (1 .69c)  

This is verified using the decompositions (1.63b,c) and the Poisson bracket relations 
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{ j~,  (a jL ,  jL)} = _2kJ~x, , (1.70a) 

{ jRx, (a jR,  jR)}  = 2kJ~x, ' (1.70b) 

((c~1 jL,  jL) ,  ( az jL ,  jL)} = 2k( (a lc r l  _ cezcr, 1 ) jL,  j L ) ,  (1.70c) 

{(alSR,  jR) ,  (a2jR, jR)} = _2k((cr ,  a l  _ crzd 1 ) jR,  jR) , (1.70d) 

which follow from (1.15a,b) and the Leibnitz rule. [] 

In the Poisson brackets (1.64) we may identify three 2-cocycles for the algebra diff 1, 

c, . ~ : d i f f  t ×d i f f  1 ~ ,  i = 1 , 2 , 3 ,  

Cl7~((O'1, /31) ,  ( O ' 2 , / 3 2 ) )  :m (/31,/3~) , ( l .71a)  

c2V((~1 /31), ( '~2,/32)) := (~1,/32) ' ' , ' ' - (a2,/31), ( l .71b)  

C3Z)( (~1 , /31) ,  ( ~ 2 , / 3 2 ) )  :=  (6t", ,O~')  . (1.71c) 

Any combination of these may be used to define central extensions of  the algebra. In 
particular, define the cocycle: 

C D := llC~I -'~ 12C~ + 13c~ , (1.72) 

where 

ll :=I3(0o, O0) - 13(¢,b0, ~b0) , (1.73a) 

12 := 13(01,0o) - 13(¢bl, ¢bo) , (1.73b) 

13 := 13(01,01 ) - 13(~,bl, ~bl ) . (1.73c) 

The centrally extended algebra diffl ̂ (td26) associated with this cocycle is identified with 

the space diff I OIR, with Lie brackets 

/ / 
[ ( OQ,/31, a l  ) ,  ( (~2, /~2,  a 2 )  ] = ( a l  a~ I --  oQo/1 , a l / 3 2  -- ¢~2/31 , 

l H l, (/3,,/31) + 12 ((or' 1 ,/31) - (a I,/3'1)) + 13 (a l ,  a2 ) ) ,  (1.74) 

(crl,/31), (a2,/32) E diff l, al,a2 E R . 

A dense subspace of  the dual space diffl A(ldzt3)* is as usual identified with diff 1 @IR, 

through the pairing: 

((v, w, a ) ,  (a , /3 ,  b ) ) 9  := (v, a) + (w,/3) + a b .  ( ! .75)  

The extended coadjoint representation of  diffl ̂ (td213) on diffl A(t't26)* is given by the 

formula 

a"-d~,~.~,b) (v, w, a)  = (2a 'v  + av' + w f f  - alz/3" - a l3a" ,  

d w  + aw ~ + all~31 + a /2an ,0) .  (1.76) 

It follows from Proposition 1.6 that we may define an extended, equivariant moment 
map from T*G to diff~ ̂ (t'tzt3)* that generates the same Dl D< Do action (1.57a-c) .  
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Corollary 1.7. The map 

f19 : T*G , diffl ^(lll2la)* ~ diffl* OR,  

f n  : (g,  l x ) ,  ' ( J V , k ) ,  (1.77) 

is an equivariant  moment  map with respect to the extended coadjoint  action (1.76), 

generat ing the 791 ~< 79o action (1.57a-c).  

The Lie Poisson bracket on diffl ̂ ~tlt2t3)* is determined by the formula: 

{(" I ( a l , f l l , b l ) ) z~ , ( "  I(a2,/32, b2))~}l<~,w,a) 

= (v, ot,ot~ - ot2dl) + (w, oq/3~ - a2/3',) + al,(/31,/3~) 
! t !  

+al2 ( (try, ilL) - (d2, fl~ ) ) + a13 (tel, °~2 ) ' (1.78) 

where, as usual, ( • I(a,/3, b) )~  denotes the linear functional on diffl ^(td2t3)* associated 
by dual pairing to the algebra element (ct,/3, b) C diffl ̂ (td2t3). The map (1.77) is thus 
a Poisson map with respect to the Poisson brackets (1.10a-c) on T*G associated to the 
symplectic form Wk, and the Lie Poisson brackets (1.78) on diffl ̂ (tlt2t~)* 

We mention at this point that for the applications to integrable systems to be discussed 
in Section 2, a particular case of the D1 ~< Do group action (1.57a-c) will be considered; 

namely, when the elements 00, 01, ~b0, q~l E g are of the form 

00 = -201 = -2t, bl =: 20, ~b0 = 0 .  (1.79a) 

Hence 

Ii = -212 = 413(0, O) =: 41, 13 = 0 ,  (1 .79b)  

and the cocycle c z~ takes the form 

c7~( (a l , / 31 ) ,  (a2,/32)) =/(4(/31,/3~) - 2(ot~,/3~) + 2(tr~,/3~)) . (1.79c) 

The Poisson brackets (1.78) thus reduce to (cf. eq. (2.36)): 

{ ( .  [ ( a l , / 3 1 , b l ) ) v , ( .  ](ot2,fl2,b2))D}l(v,w,a) 

+4a/(/31,/3~) - 2al ( (or' 1 , /3~_) - ( ot~, /3'1) ) • (1 .80)  

Note that for k 4~ 0 the maps J~  : T*G ~ diffl*, )'z) : T*G ~ diffl ̂ (1't2/3)* 
defined by eqs. (1.63a-c), (1.77) factor through the map jLR : T*G --~ (~@~)* or 
a *LR : T*G ---, ( ~ ) ^ * ,  suggesting that the Dl ~< Do group action (1.57a-c) also 
induces a Hamiltonian action on (~@~)^*.  This is in fact the case, and the action is 
easily computed. 

Proposition 1.8. The moment  map ]LR : T*G --* ('~ ~ ~)^*  is equivariant  with respect 
to the 7)1 D< 7)0 action (1 .57a-c)  on T*G and  the fo l lowing  action on ('~ @ g ) ^ *  : 
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( ~ , f )  : ( ~ e ~ )  ^* ~ ( ~ e ~ )  ^* , 

(~-, f )  : (U,V,a) ~ ((/, ( / , a ) ,  (l.81a) 

where 

0 = o"O1 (3-')¢90 ( f  o ~r) (U o ~r)Oo(f  o ~r) - lO  1 (~") --1 

~.tt 
+ a ( f  o o')'0o + a-~701, (1.81b) 

= o"q°l (o")¢/'0 ( f  o ~') ( V o o')@0 ( f  o ~-) -1~ 1 (~-') -1 
~r tt 

- a (  f o ~r)'dpo - affTfbl . (1.81c) 

Proof This is verified by directly substituting the RHS of eqs. (1.57b,c) into the 
definitions (1.13a,b) of jL and jR. [] 

The Hamiltonian properties of this action are summarized in the following. 

Theorem 1.9. For k 4= O, the moment map ,79 factors into: 

j ~  = jd o jLR, (1.82) 

where the map jd : ('~ @ ~)^ .  , diffl^(ttt2t3)*, defined by the formulae 

Jd(U, Va)  = ( jdl, jdO, a ) ,  (1.83a) 

1 
jd l (u ,V,a)  :=-]3(Ut,O1) - B(Vt,q~l) + ~a(]3(U,U) - ]3 (V ,V) )  , (1.83b) 

Jd°(u,V,a) := B(U, 00) +B(Vdpo) (1.83c) 

(for a 4= O) is a Poisson map with respect to the Lie Poisson brackets (1.24) and (I.78) 
on (~ ® ~)^* and diffl ̂ (ttt2t3)*. The Hamiltonian flow generated by 

~ (Y~,(~,~,a))v J(a,fl,a) := 

generates the action (1.81a-c) for the l-parameter subgroup {exp[ - t (  a, fl, a) ] }. Thus, 
we have the following commuting diagram of equivariant moment maps: 

T*G J'~ diffl A(ld213)* 

Proof The factorization property (1.82) is seen directly from eqs. (1.63b,c), The fact 
that the map Jd is Poisson with respect to the Lie Poisson structures on (~ ~)^(tlt2t3). 
and diffl ̂ * is proved by the identical computation used in proving Proposition 1.6. The 
vector fields generating the l-parameter subgroups acting through (1.81a-c) are easily 
computed to be: 
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X d l=  -(o~'U -~- o~'[01, U] --~ olO' -,~ aot"Ol, 6/$U) 

- ( d V  + a'[~bl, V] + aV'  - aa"fbl ,  6/6V) (1.84a) 

for the Dl-action, and 

X~ ° = - ( f l [  Oo, U ] + afl '  Oo, 6 /  SU) - (fl[~b0, V] - a/3' ~bo, 6 /  SV) (1.84b) 

for the D0-action. Using the definition (1.24) of the Lie Poisson bracket on (~ • ~)^*, 
together with the Leibnitz rule, we find: 

Xd'((  " I(X,Y,b)))={J~,~,o,o),(" ](X,Y,b))}, (1.85a) 

Xa~°( ( • I( X,Y,b) ) ) = { J'~o.a,o), ( . I( X,Y,b) ) } , (1.85b) 

and hence jd is the moment map generating the action (1.81a-c) through Hamiltonian 
flows. [] 

Note that the moment map JV = (3o, j l  ) defined in eqs. (1.63a-c) may be expressed 

in a form that is equally valid whether k vanishes or not: 

jo = 13(gixg-l,  0o) + 13( - i x  + k g - l g  ', ~b0), (1.86a) 

j l  = _13( (gixg-l  ) ,, O1 ) - 13( _ixt + k ( g - l  g,) ,, ~bl ) 

+/3(gixg-l ,  g, g-1)  + ½k13(g, g - l ,  gt g-1 ) . (1.86b) 

However, for k = 0, these maps do not factor through JLR : T*G ~ (~@~)^*.  In 
the next subsection, two twisted Dl D< Do actions that are Hamiltonian on T*G will be 
considered, whose moment maps, while not factoring through jLR, do instead factor 
through the moment map jLA : T*G ~ (~ @ ~A) ̂ * of Corollary 1.5. The first is just a 
special case of the above, with the homomorphism q~ : R x x R x ~ G chosen as trivial, 
while the second is a new form of "twisted" D1 ~< D0-action. 

1.5. Canonical symplectic structure: factorization through JLA : T*G --~ ('~ q- ~A) A* 

First, consider the k = 0 case of the 7)1 D< Do action (1.57a-c), with q~ trivial, i.e., 
~bo = ~bl =0.  From eqs. (1.86a,b), we see that the moment map jz~ = ( jo,  f l )  may be 
expressed as 

jo = 13( jL ,  00),  (1.87a) 

j l  = _I3( jL' , Ol ) + 13( jL ,  jA ) , (1.87b) 

and thus factors through JLA : T*G ~ (~ ~ A )  ^*. The corresponding induced action 
on (~@~A) ^* is easily computed to be: 

( ~ ' , f )  : (U, V,a) --* (g / ,~ ' , a ) ,  :1.88a) 

where 
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:= o"01 (~r')Oo(f o ~-) (U o o ' )Oo( f  o ~-) -101 (3")  -I  , (1.88b) 

(/ := o"O1 ( o")Oo( f o ~r) (V o o')Oo( f o ~') - l  O 1 (~ ' ) -1  

+6-' o ~, 0o + ~-01  . (1.88c) 

The vector field generating the action of the 1-parameter subgroup { e x p [ - t ( a , / 3 )  ] } is: 

xd~ dO~ y d  1 a (,~,a) = X~ + . . a  ' (1.89a) 

where 

X~ °° := - ( f l [ 0 o ,  V], 8/6V) - (/3[ 00, U] +/3 '00,  6/~U),  (1.89b) 

x.  ~'o := - ( ( a v ) '  + d[0 , ,  v], a/au) 

- ( ( 4 U ) '  + 4' [O1, U] + 4"01,6/6U) . (1.89c) 

The action (1.88a-c)  is again Hamiltonian, and generated by the moment map 

jd~ : ('~ + ~A)A* > diffl .  ' 

jda : ( U , V , a )  , ( j a o . , j e l o )  , ( 1 . 9 0 a )  

where 

jaoo := 1/3(V, 0o) ,  (1.90b) 
a 

jdl,, := _ l j ~ (  v t  ' Ol ) + 1].3( U, V )  . (1 .90c)  
a a 

In this case, both the maps j v  : T*G ~ diffl* and jao : (g q_ ~ a ) ^ .  ~ diffl* are 
equivariant, satisfying: 

j •  j v  ~ j v  . . . .  
(Otl,al) , (o!2,a2) f = (Otla2_a2o,1 ,otla2_~t2al ) , ( 1.91 ) 

jaa Ida -[ _ jda 
(,,, ,at)' ~(,,2,a2) J - ( , , t  a ~ - a z a ~  ,"t3~-"za~) " ( 1.92 ) 

These are therefore Poisson maps with respect to the Lie Poisson structure on diffl* 
without central extension. Summarizing, we have: 

P r o p o s i t i o n  1.10. For k = O, the moment map j v  factors into: 

j v  = ja. o jLA . (1.93) 

We thus have the commuting diagram of equivariant moment maps: 

T* G jv  diffl* 

3LA~ /~ J da 

(~ 4-~A) ̂ * 

where j D  generates the DI ~< 790 action (1.57a-c), with k = O, dpo = #hi = O, and jda 

generates the action (1.88a-c). 
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Another "twisted" action of D1 ~< D0, or rather of the subgroup Dl D< D~- C D1 ~< Do 
consisting of {(~-, f ) ,  f > 0}, may be defined on T'G, one which is nonequivariant, but 
still factors through jLA :T ' t3  ~ (g 4-~A) ^*. Let O = (O0, O1 ) : ]R x × IR x --~ G again 
be a homomorphism, with derivative at the identity (1, 1) identified, as in eq. (1.55), 
with a pair00, 01 E g of commuting elements of 0. Define a right action D1 ~< D~- : 
T*G -* T*G by: 

(~- , f)  : (g,/~) ) (Ol (O- ' ) (goo- ) ,  o-/(/.t oo-) 

+ [ l n ( f  o ~r) (g o ~ ) - lOo(g  o ~r) ] ') . (1.94) 

It is easily verified that this does compose correctly to define a right action of ~D 1 ~ D~, 
and that this action leaves invariant the canonical symplectic form too on T*G. The 
infinitesimal action obtained by differentiating the flow of {exp[ - t ( a ,  f l)]} given by 
(1.94) is represented by the vector field 

X ~ )  := X~ A + ,~A , (1.95a) 

where 

~A := X~oo (1.95b) 

generates the D~- action, and 

X~ A := - (ag ' ,  8/8g) - ((al~)t, 8/8iz) + X~,o~ (1.95c) 

generates the Dl-action. Thus 

X v~ : diffl , x ( T * G ) ,  
~Da X zh : (a ,  f l ) ,  , X(~.~) (1.96) 

defines a homomorphism to the Lie algebra x(T*G) of functional derivations (vector 
fields) on T*tT. The Hamiltonian properties of this action are given in the following: 

Proposition 1.11. For k = O, the Dl D< D+-action (1.94) is Hamiltonian, and generated 
by the moment map 

jva  : T . G  - ,diffl*, 

jz~a : (g, /z) ,  , (flA,JOA), (1.97a) 

where 

joa = 13( ja ,  0O), (1.97b) 

jIA = _13( jL' Ol) + 13( jL, j a )  . (1.97c) 

This map is nonequivariant, satisfying the Poisson bracket relations: 
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f ~'Da iDA l lDa d ~d ~ d  t t t l 1 (Otl ,~1 ) (Ot2,/~2) f ( Oq t~2 -- Or2 a t  ,O~l f12 --a2/~t ) 

l l - -  +B(0o ,01) [ (1 , /32)  (a~,fl~)] , (1.98) 

where 

jv~(~,~) := ( j v ~ , ( a , ~ ) )  = (fa ,ce)  + (J°~,/3) . (1.99) 

Proof The equalities 

X°~ a J oJo = -~$(J~oo), (1.100a) 

X~ a J wo = -~3( JL~,ot ) - 8(aJ  L, ja  ),  ( 1 . 1 0 0 b )  

which imply the formulae (1.97b,c) for the moment map JV~, are directly verified 
from the definitions (1.95a,b), (1.8), (1.13a) and (1.30) of X °a, X la, w0, jL and ja,  
respectively. The Poisson brackets (1.98) are equivalent to the relations: 

= 

= (jLa~ol _~_ (OtljL, j A ) ,  Ja;o~ + (az Jz, ja)} 

{ jalA, ,~a } = - - ~ a  ( J  la ) 

= {JL, o ' + (ot jL,  j A ) ,  J~oo} 

= JA#,oo + B( Oo, O1) (a', t~') , 

= { J~,oo, J~20o} 

(1.101a) 

(1.101b) 

= 0 ,  (1.101c) 

where 

j~a := ( j l a , a ) ,  ~a  := (jOA ,/3) . (1.102) 

These may be verified either directly from the definitions (1.95b,c), (1.97a, b) of 3 ~ ,  
X~,, jo,  and f " ,  or with the help of the Poisson bracket relations: 

{ jL, oI ' (Ot2jL, jA )  } = __jL,l, a201, (1.103a) 

{(O~ 1 j L ,  j A ) ,  (Ot2JL, j A ) }  = ( ( O ~ 1 0 ~  __ Ot20t])jL, jA )  , (1.103b) 

which follow from eqs. (1.40a-c), together with the Leibnitz rule. D 

Since the cocycle c~ (eq. (1.71b)) enters in (1.98) we proceed, as usual, defining 
the central extension diffl ̂ (°'-t'°) as in eq. (1.74), with 

ll = 13 = 0,  12 = / 3 ( 0 1 , 0 0 )  =: --1 , ( 1 . 1 0 4 )  
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which gives the extended coadjoint representation 

~d~,~,/3.b)(v, w, a) = (v ia  + 2vo/ + wt~ I + altO", ( w a )  I -- alo/I, O) . 

We then have 

(1.105) 

Corollary 1.12. The extended moment map 

fDA : T*G , diffl ̂ (°'-/'°)* , 

J ~  : (g , /z ) ,  , ( j v a ,  1) , (1.106) 

which also generates the 791 ~< 79~-action (1.94), is equivariant with respect to the 

extended coadjoint action (1.105). It is thus a Poisson map with respect to the Lie 

Poisson structure determined by the Poisson brackets 

{(" [(al,Bl,bl))v,(" [(ot2,B2,b2))v}l(v,w,a) 

= (U, OQ 0'~ --  0~20/~ > -~- (W, Ot I / ~  --  0~2/~ ) 

_ O,¢ - a l ( ( ° t i , ~ )  ( 2, /3~)) . (1.107) 

From formulae (1.97b,c), we see that the moment map fDa : T't7 ~ diffl ̂ (°t°)* factors 
through ]LA : T ' G - - *  ('~ ~- ~A) ^*, suggesting again that the 791 i:< 79+-action (1.94) 
induces a Hamiltonian action on (~ + ~A) A*. This is easily computed, and the result is 
summarized as follows. (Eqs. (1.109b,c) for the case 00 = -01 = 0 will reappear as 
eqs. (2.42a,b) in Section 2.) 

Proposition 1.13. The moment map ]LA : T*G --~ (O+Oa)^* is equivariant with respect 

to the 791 ~< 79~ action (1.94) on T*G and the following action on (1~ q- ga) ^*: 

(~-, f )  : ( ~ 4 ~ A )  A* , ( ~ 4 ~ A )  A* , 

(~ r , f )  : (U,V,a) ,  , ( ( ] , ( I ,a )  , 

where 

0 =~rOl (o") (U o o')Ol (o") -~ + -~701 , 

(1.108a) 

( f  o ~-)' 
~ '=~"Ol(~")  [ ( V o ~ r + l n ( f o ~ ) [ O o ,  V o ~ ' ] ] O l ( ~ " )  - 1 +  - - - -  0o (1.108c) 

f o ~ -  

This action is Hamiltonian, and generated by the equivariant moment map 

i d a  : (~ .~_~A)A* , d i f f l^ (O, - / ,0 )* ,  

Ida : (U,V,a) , , ( jd la , jdOa,1)  , (1.109a) 

where 

jdoa :=/3(U, 0o),  (1.109b) 

jala 2= ! [ __13(V t, 01 ) + ~ ( U ,  V)  ] . (1.109C) 
a 

(1.108b) 
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This is therefore a Poisson map with respect to the Lie Poisson structure determined by 

the Poisson brackets (1.107). 

Proof. Differentiating along the flow generated by the action (1.108a-c) corresponding 
to the 1-parameter group {exp[ - t  (a,/3) ] } gives the representation 

X dz :diff  I , X ( ( ~ - ~ A )  ^*)  , 

dA xdla xd  OA X dA : ( c e , / 3 ) , )  X(~,/3) := + (1.11Oa) 

of diff~ by functional derivations (vector fields) on (g -4- gA) ̂ * defined by: 

X~ °a := -((/3[00, U] +/3'0o),~/,3V), (l.110b) 

X dlA := --<({~'V) / -~- Olaf [O1, V] ,  ~/~V> 

-((c~U)' + a '[01,U] + d ' O l , a / S U )  . (1.110c) 

By explicit evaluation, and use of the Poisson bracket relations (1.40a-c) and the 
Leibnitz rule, we find 

{ j~oa , ( .  I(X,Y,b))}=x~OA((. I (X,Y,b)) ) ,  (1.111a) 

{jdla ( .  I ( X , Y , b ) ) } = x d l a ( ( .  [(X,Y,b))) , ( l . l l l b )  

j OA} = A) = 0 ,  l l l c )  

,,oA _ _x O. ( j , , . )  = , ,o .  • 'a ,0/3 J -  "a/3' +B(Oo, Ol)(d , /3 ' ) ,  ( l . l l l d )  

showing both that ]aA = (j~]A,jao~, 1) is the moment map generating the action 
(1.108a-c), and that it is equivariant, hence preserving the respective Lie Poisson 
structures on (~'-~- ~A) A* and diffl ̂ (O'-t'O)* defined by eqs. (1.39) and (1.107). [] 

For the applications to integrable systems to be discussed in Section 2, a particular 
case of the D1 ~< D~- action (1.108a-c) and moment map (1.109a-c) will be used; 

namely, when 

0o = - -01  =: 0 , ( 1 . 1 1 2 a )  

and hence 

t3(0, 0) = l . (1.112b) 

Finally, combining the results of Propositions 1.11 and 1.13 and Corollary 1.12, we 

get: 

Theorem 1.14. For k = O, the moment map fDA : T*G ---* diffl ̂ (°'-t'°)* factors  into 

~ A  = yda 0 JLA, (1.113) 
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giving the following commuting diagram of equivariant moment maps: 

T*G yz, A difflA(0,_t,0). 

jLA NN~ //~ jd 

( ~ - ~ A )  ^* 

2. Integrable systems 

2.1. Algebraic language 

The preceding section emphasized the symplectic geometry of T*G and Lie Poisson 
structures. In modern theories of integrable systems in 1 + 1 dimensions, one often deals 
with local evolution equations, for which the language of differential algebra is the 
most efficient. On a practical level, the translation from functional to algebraic language 
consists of replacing: 

(i) Functionals by their densities, and integration by parts by equivalence modulo "di- 
vergences" for these densities. (The algebraic calculus of variation results thereby.) 

(ii) Symplectic forms and Poisson brackets by a Hamiltonian map H ~ X H assigning 
to any Hamiltonian density H the evolution derivation XH via the rule 

(q,t = ) XH(q) = B (tH/tq) , (2.1) 

where q is a-column-vector of the basic variables ("fields") chosen in a fixed basis, 
with ith component qi; BH/~q is the column-vector of variational derivatives of H, 
and B is a skew symmetric matrix differential operator whose properties guarantee 
the Jacobi identity. 

In the loop'space setting, the most frequently met structure consists of Lie Poisson 
brackets associated with centrally extended Lie algebras. This is translated into the 
following algebraic construction. Denote by K a differential algebra with derivation a. 
(In Section 1, these were K = C°°(R) or Coo(S l) and a = 0/&r.) Let ~ = K ~, 

C N O {co}, be a differential Lie algebra-consisting of column vectors of dimension 
with entries in K. The commutator in ~ is of the form: 

[X,Y]k=EC~praP(Xi )Or(y j )  (finite sum V k) , X ,Y  C ~ , (2.2) 
ijpr 

where c~p r c K are structure elements defining G and Xi E K denotes the ith component 
of X E K ~. Let /2 be a (generalized) 2-cocycle on ~. This means that/2 : ~ x ~ ~ K 
is a bilinear skewsymmetric differential operator satisfying 

/2([X,Y], Z)  + / 2 ( [ Y , Z ] , X )  + / 2 ( [ Z , X ] , Y )  ,,, O, (2.3a) 

/2(X, Y) ~ -/2(Y, X) , (2.3b) 

V X, YZ E O , 
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where (.) ,-~ 0 means that (-) E Im O. In the loop algebra setting, one associates with 

this data the centrally extended algebra G ̂  = G ® R, with Lie bracket 

[(X,a),(Y,b)]=([X, Yl,fo(x,Y) do'), X, Y E G ,  a, b E R .  (2.4) 

In the algebraic approach, one associates to the pair (G, ,(2) an affine Hamiltonian matrix 
(of  differential operators) 

B = B ( ~ )  + ba, (2.5) 

where the linear part B ( ~ )  (in the basic variables q) of the Hamiltonian matrix B is 

defined by the relation 

[B (G) (X) ] tY  ..~ qt[X,Y] := Z q k [ X , Y ] k ,  
k=l 

V X,Y E G • (2.6a) 

A q-independent matrix differential operator ba is associated to the bilinear form /2 via 

the rule 

[ba(X)] tY  ~ 12(X,Y), V X,Y E G • (2.6b) 

One of the basic features of the algebraic Hamiltonian formalism is that there is a nat- 

ural one-to-one correspondence, given by the formulae (2.6a,b), between pairs (G,/2) 
and affine Hamiltonian matrices. (The latter encompass more general situations than 

the geometric ones, where the Hamiltonian operators are of order zero in 0. For exam- 
ple, Lie algebras of differential and pseudodifferential operators have no natural local 
description as the infinitesimal form of groups.) The geometric Lie Poisson brackets 

of the previous section, which express the multiplication rule (2.4) in the language of 
linear functionals can be extracted from formula (2.5) via the following computation. 
Let X, Y E G, and let H = qtX, F = qty be linear Hamiltonians. Then 

6F 8 F B ( S H  ) 
{qtX, qtY} = { H , F }  =: XH(F) ~ -~qtXH(q) = 6q t -~q 

=Y ' [B (O)  + bn] (X)  ~ qt[X,Y] + J2(X,Y) . (2.7) 

Remark  2.1. The recipe (2.5), (2.6a,b) handles situations, like that of formula (2.4), 
where the centrally extended Lie algebra in question has components of different differ- 
ential dimension; X and Y are functions, a and b are numbers. When G is a Lie algebra 
over • (or C, etc.) rather than over K, and 12 is a true 2-cocycle, not a generalized 
one (i.e. one has an equality sign instead of the ~ sign in formulae (2.2), (2.3)),  then 
G ̂  ,-~ ~ @ ~ is again a Lie algebra over R. Treating it as a new Lie algebra, we get 

from formulae (2.6a,b) that 
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q a 

B(G ̂ )  = , (2.8) 
a tO t ] 

where a is the extra-coordinate on the R-part of G ̂ * ~ ~* @/IL Thus, we can let 

(2.9) 

and what remains from B ( ~  ̂ )  is our universal formula (2.5) (for 

a = const. 

in formula (2.8) 

a = l ) .  

Let us consider, as an illustration, the case of the Lie algebra ~ (or Lg) of the 
previous section. Fix a basis in g. Then ~ = K ~, where ~ = dimg. Let the Ad-invariant 
form 13 on g be given, in the chosen basis, by a symmetric matrix B: 

13(x, y) = yt-~x,  X, y E g, 

and let c~ be the structure constants of g in the same basis: 

[x,y]k=Zck.xjYi .  
jk 

Then, for both g (over •) and ~ (over K) 

B ( ~ ) i j  = B ( ' ~ ) i j  = ~ c~qk. 
kj 

Also, since 

O(X, Y) = t3(a(X) ,  Y) = r ' B a ( x ) ,  

we see that 

ba = 133, 

so that, finally, 

Bij = ~ c~qk + -~ij3. 

If  an orthonormal basis for g is chosen (with respect to B), we have 

so that the equations of motion for a Hamiltonian H are 

dli = ~ BL/ \ = ~ cuqk ~qj + 
j jk • 8qi j 

= - q " ~ q  i+ ~ i '  

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17a) 
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i .e.  

In other words, 

B = - [ q ,  ] + a l .  (2.18) 

I f  the chosen basis of  fl is not orthonormal, then one has the familiar form 

B(  • ) = - a d ~ .  )q+-~O . (2.19) 

Finally, we discuss Hamiltonian maps. Suppose B is a Hamiltonian matrix over the 
ring C u = K [ q , q  I . . . .  ], and let Bl be a Hamiltonian matrix over another ring Cu. A 

homomorphism of  differential rings (over K) 

(1): C u ----+ Cq (2.20) 

which commutes with 0 is called a Hamiltonian map if 

~ X H  = Xqb(H)~ , V H E Cu. (2.21) 

(This map should be viewed as dual to a Poisson map on the fields q H u, which was 
the object of  study throughout Section 1.) In terms of the Hamiltonian matrices B and 

B1, the compatibili ty condition (2.21) is expressed by the equality 

@(BI ) = D ( ~ ) B D ( ~ )  t, (2.22) 

where 

ff~ := q0(u), q0,~ = #(u,~) , (2.23) 

D( f f0  is the Fr~chet derivative of  q~: 

Oqh~ Oe (2.24) 
D(  ff~)ai = Z 3qS-----S ' 

g 

and ,t, denotes adjoint. 

As an example, 

2B1 = 2(u0 + 0u) - la 3 (2.25) 

defines the differential algebraic version of  the Virasoro algebra, denoted here C, (equiv. 
(diff  S 1 ) ^ )  associated with the generalized 2-cocycle 

,O(Cel, Ce2) = l /ot la3(Ot2) (2.26) 

on the Lie algebra of  vector fields on R (or S l ). 
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Consider the ring homomorphism generated by 

q~( u) = Ot q ' + qt q (2.27) 

from Cu into Cq, where 0 is a fixed (constant) vector in g, with the Hamiltonian matrix 
B in the ring Cq given by formula (2.18). Then 4~ is a Hamiltonian map, since 

D ( q ~ ) B D ( ~ )  t =(OtO + 2 q t ) ( [ - q ,  ] + 0 1 ) ( - 0 0  +2q)  

= ( - o O t [ q ,  ] + OtO 2 + 2qtO)(-OO +2q)  

= _OtO03 + 2020tq - 2qtO02 + 4qtOq 

= -OtO,93 + 2(0tq'a + aO'q') + 2(qtqa + aqtq) 

= q , ( - 0 ' 0 a  3 + 2ua + 2au) = q~(2Bl) , (2.28) 

provided 

l = OtO . (2.29) 

Thus, the criterion (2.22) is satisfied. (The geometrical significance of the Hamiltonian 
map (2.27) in the loop group setting is explained in HK1].) 

Remark 2.2. To make contact with the notation of the previous section, we adopt the 
convention that boldface letters denote column vectors representing the components of 
elements either of g relative to some basis, or of g* relative to the dual basis, or elements 
of the corresponding loop algebra ~ or its dual ~*. Thus, the elements 0, ~b C g are 
replaced by the column vectors O, ff E ~dimg, while the elements U, V E ~* are 
replaced by the column vectors U, V E g dirndl . 

2.2. Dispersive wave systems 

In Section 1 we derived two families of Poisson maps: 

J d  : ( ~ ) ~ ) A *  ' diffl ^(td213)* , (2.30) 

defined by eqs. (1.83a-c) and 

JdA : (~4_~a)^* , diffl ̂ (°'-t'0)* , (2.31) 

defined by eqs. (1.90a-c). In the following, we shall consider two special cases of these 
maps; for the map (2.30), we take the values for 00,01,~bo,qh in eqs. (1.83a-c) as 
given by eqs. (1.79a,b), for which (lll213) = (4 / , -2 l ,  0), and denote the corresponding 
centrally extended algebra diff 1~1 ) := diffl ̂  (4/,-2/,0) for brevity. For the map (2.31 ), we 
choose the values for 00, 01 in eq. (1.90a-c) as given by eqs. (1.112a) and denote the 
centrally extended algebra diffl~0) := diffl ̂ O'-t'°). Thus, the subscript (a)  = (1), (0) 
distinguishes two different central extensions of the Lie algebra diff 1. We first convert 
these maps, according to the lexicon of the preceding subsection, into algebraic Harnil- 
tonian maps and then derive integrable hierarchies on (~@~)^* and (~ ~ A )  ^* from 

• A* known integrable hierarchies o n  dlffl(a). 
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When (a)  = (1), we have the Lie algebra g @ g where, choosing normalizations to 
correspond to the fluid dynamical conventions in [ Kul ], the commutator is 

' = \  [Y~,Y2] / '  2i, Y / E ~ ,  (2.32a) 

and the 2-cocycle is 

/2(1,2) :=12 Y~ ' I/2 - ~-1,2. (2.32b) 

Thus, we are working with the centrally extended algebra (~ @ ~)^, with Lie bracket 
(1.20), under the identifications (½X, Y) = (X, Y) and the 2-cocycle 12 of eq. (2.32b) 
is normalized to half c tR of eq. (1.19). To simplify calculations, we choose from 
now on an orthonormal basis in ~t. Denoting the generic basic variable q by U and V 
(corresponding to 2U and V in (1.21)), the Hamiltonian matrix (2.5) encoding the 
data (2.32a,b) is 

( - 2 [ U ,  ] + 2 0 1  w ) (2.33) 
B(1)= w - [ V ,  ] - ½ 0 1  " 

This Hamiltonian matrix is thus the algebraic version of the Lie Poisson bracket ( 1.24) 
a t a =  1- 2" 

For the Lie algebra diff 1, we have the commutator 

O~1 , Or2 ---- ik O~10~ O~] O~2 fl , Bi, oli 6 K , (2.34) 

and the 2-cocycle 

a~,)(1,2)  = t (2B,/~ + ,~B~' - / ~ , " i ' )  (2.35) 

corresponding to the central extension diffx~l) (of. eq. (1.79c)). Denoting the generic 
basic variable q as h := v and u := w (the standard notation from fluid dynamics), the 
corresponding Hamiltonian matrix is 

-- ( 2lO Ou - -  10  2 

B(1) = _ u 0 + 1 0 2  hO + Oh J " (2.36) 

This gives the algebraic counterpart of the Lie Poisson bracket (1.80) (at a = ½). 
For diff I ~'0), we have another 2-cocycle on the Lie algebra diffl: 

/'2(0)(1,2) = I (ce,fl~' - / 3 , ~ ' )  . (2.37) 

The corresponding Hamiltonian matrix on diffl~0* ) is 

( 0  cgu -- lO 2 ) 
-B(o) = uO + lO 2 hO +Oh ' (2.38) 

which is the counterpart of the Lie Poisson bracket (1.107) at a = 1. 
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For the Lie algebra ~ q-~A, we have the commutator (cf. (1.26)) 

X1 , X2 = [X1,X2] , Xi, Yi E "~, (2.39) 

and the 2-cocycle (cf. (1.37) ) 

t t /2(1,2) = Y[X~ + X l r  ~ , (2.40) 

so that the corresponding Hamiltonian matrix, in the variables q = ( U , V )  (which 
correspond in this case to the pair (U, V) in (1.27)), is 

( ~o - [ U ,  ] + 0 1 )  
B(0)= - [ U ,  ] + 0 1  - I V ,  ] ' (2.41) 

which is the algebraic counterpart of the Lie Poisson bracket (1.47) at a = 1. 
From Theorem 1.9 of the preceding section, with ~bo = 0, 00 = -2~bl = -201 = 20, 

a = ½, and 0 replaced by the corresponding column vector 0, we have 

Proposition 2.1. The map @(l) : Cu,h --~ Cv, V, given on the generators u and h by the 

formulae  

q~(1) (u)  =OtU , (2.42a) 

q~O) (h)  = Ot(½U' + V ) '  + ¼UtU - V t V ,  (2.42b) 

is a Hamiltonian map with respect to the Hamiltonian matrices B(I) (2.36) and B(j)  
(2.33), with l := 0t0. 

From Proposition 1.13 of the preceding section, with 0 = 0o = -01, we have 

Proposition 2.2. The map ~(o) : Cu,h ~ Cv, v, defined by the formulae 

q~(0) (u) = OtU, (2.43a) 

q~(o) ( h) = OtV ' + UtV  , (2.43b) 

is a Hamiltonian map with respect to the Hamiltonian matrices B(0) (2.37) and B(o) 
(2.41), again with l := OtO. 

These results may also be verified directly, of course, by a-c omputation similar to 
(2.28). Until the end of this section, 0 will be taken to have unit length: 

l = o to  = 1 . (2.44) 

In the Hamiltonian structure B(1) (2.36), the following sequence of Hamiltonians: 

H1 = h, H2 = uh . . . . .  (2.45a) 
1 

H n : = -  Res  ( O + u + h O - 1 )  n ,  n E N ,  (2.45b) 
n 
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where 

Res ( Z  aiSi ) : = a - i  (2.46) 

is known to form a-commuting family [ Kul ]. The first flow, with/- /= h, produces the 
o--shift (i.e. / /= q~, whatever q is), while the flow of the Hamiltonian 

H = ½H2 = ½uh (2.47) 

produces the equations of dispersive water waves (DWW) 

1 2 1 t ~u )' t~=(~u + h -  , (2.48a) 

1 t t h=(uh+ ~h ) . (2,48b) 

When 0 is one-dimensional, the Hamiltonian map 4>(1) produces an infinite commut- 
ing hierarchy of Hamiltonians ~ o ) ( H , ) ,  called the modified dispersive water wave 
(mDWW) hierarchy (in the variables U,V + ½U). For 0 arbitrary, we again obtain an 
infinite commuting hierarchy, this time with respect to the Hamiltonian structure (2.33). 
The first flow, with Hamiltonian 

cb(t)(h) ..~ ¼UtU- V'V , (2.49) 

is just the o--shift, as was to be expected. 
Let us compute the equations of motion for the next flow, which we denote 0-mDWW 

(0-modified dispersive water waves). We have, for any H C Cu.h: 

( ~ / 6 U ' ,  D (q~(,))' qs(l ) (  ~3/~5u' 
= 6/6h ) (H)  (2.50) 

where 

( / "  
(which is the same as formula (2.42)).  Hence, 

D(~(~) ) t  = . (2.52) 
o~ - o 0  - 2 V  / 

Denoting, for brevity, 

5 :=q~(1)(u) , h :=@(1)(h) , (2.53) 

we then get, for H = uh/2: 

8cp(,)( H) /SU= (l h - ¼fi') 0 + ¼flU, (2.54a) 

~cI)(1)(H)/SV= l-t - T u  0 - f V .  (2.54b) 

Applying the Hamiltonian matrix B(l) (2.33) to the vector (2.54a,b), we obtain the 

0-mDWW equations of motion: 
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_ _ 1 t V=(½tt  ¼fi')tO, U ] + [ ( h  ½fi')O+~fiU] , (2.55a) 

- 1 - ,  ½~V)' v = ~u tV, ol + (½n'o + (2.55b) 

Similarly, in the Hamiltonian structure B(0) (2.38), the following sequence of Hamil- 
tonians: 

7-[1 = 2h, 7-12 = ½ (uh + h 2) . . . . .  (2.56) 

is known to form an infinite commuting family [Kul ]. The first flow, with Hamiltonian 
½7-/1 = h, is the o--shift; the second flow, with Hamiltonian 7-/2 = (uh + h 2)/2, gives 

I ! ! ft = (½u 2 + uh - ~u - h') , (2.57a) 

h = (uh + ~h 2 + ½h')', (2.57b) 

which are the first mDWW equations (in the variables (u + 2h; h) ). (The reader may 
check that in these variables one obtains the same system as the {g = R}-case of the 
system (2.54a, b) in the variables (U; V + ½U)). The Hamiltonian map q~(0) produces 
an infinite hierarchy of Hamiltonians q~(0)(7"/n) commuting in the Hamiltonian structure 
B(0) (2.41). For the case g = R, this hierarchy is known as the (doubly modified) 
mZDWW hierarchy. Supppose now that g is arbitrary. The Hamiltonian 

~(o) ( ½7-[1 ) = ~(o) (h) ~ U t V (2.58) 

produces the o--shift, as expected. To compute the first nontrivial flow, with Hamiltonian 

~(o) (7-[2) = ~o [ ½ (uh + h 2) ] , (2.59) 

we have: 

4 ( 0  ) = ~kc~(0)(h) j =: = ~ o t v  ! ÷ u t  v (2 .60)  

(which is the same as (2.43a,b)), so that 

( 0  t w ) t  ( 0  V ) (2.61) 
D ( ~ ( 0 ) ) t =  V t U t +OtO = w U - O 0  " 

Hence, for any H E Cu,h, 

= v-o  ) (2.62) 

and for the case H = 7-12 = (uh + h2)/2,  we get 

(Sq~o(7-12)/SU'~ ( ½hO+ ( ½ ~ + h ) V  "~ 
= ( ½ f i + h ) U - ( ~ f i + h ] ~ O ]  " (2.63) 6~o('1-(2) / 6 V  ] 

Applying the Hamiltonian matrix B(0) (2.41) to the vector (2.63), we get the first 
nontrivial flow in the g-m2DWW hierarchy: 
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h)' [U,O] + [(½fi + h ) U -  (½fi + h)lO] ' , (2.64a) O= + 

V= ½h[O,U] + (lfi + / 0 ' [ V ' 0 ]  + [ l h 0 +  (lfi + h)V]' , (2.64b) 

Remark 2.3. There also exists a family of rational Hamiltonian maps (as opposed to 
• A *  the polynomial ones we have been dealing with so far) from (g ® ga) ̂ * into dlffllrl, 

~I;,I : Cu.h ---+ Cu,v, of the form 

N 

~Irl (u) =y tU  - e Z [ln(U + V)'0~] ' , (2.65a) 
s= l  

~lrJ (h) = ¼(UtU - VtV) , (2.65b) 

where 01 . . . . .  O N is a family of pairwise commuting constant elements in g, y is another 
constant element in g, y := ~ty, and 

-4 IV ,  ] - 2 0 1  ' 

- 0 2 )  
[' 2~.y0 Ou (2.66b) 

BIll = \ u o + o 2  hO + Oh " 

In particular, when y ty  = 1, the Hamiltonian matrix Bill of eq. (2.66b) is the same as 
B(l)in (2.36)• Therefore, the set of Hamiltonians {q~txl (H,)} forms a new 9-mDWW 
infinite commuting hierarchy. Similarily, when ~ y  = 0, the Hamiltonian matrix B[0l 
of (2.66b) is the same as the Hamiltonian matrix B(0) in (2.38)• Hence, the set of 
Hamiltonians {~[0l ( ~ , ) }  forms a new 9-m:DWW infinite commuting hierarchy. The 
geometric nature of the map ~1~1 defined by eqs. (2.65a,b) is as yet a mystery. 

2.3. Specializations 

The hierarchy of DWW equations 

h ~6Hm/Sh , m E N ,  (2.67) 

has, for every odd flow m = 1 (mod 2), the invariant submanifold defined by u = 0, on 
which this hierarchy reduces to the KdV hierarchy 

h, = ½0 (8-H2m+3/t3h) = (la3 + ha + Oh) (6-H2m+l/t~h) , (2.68) 

where 

-nm "= Hmlu=O • 

This follows from the following formulae [Kul ]: 

(2.69) 
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~-H2m/ 6h = O, 

~nm+l/Sh = 2~nm/SUlu--O - O (~-Hm/~h) , 

O (t~am+l/t~u)]u---O = (hO + Oh) (8-amiSh) -9 O 2 (Snm/SU)lu--O, 

O (8-Hm+2/6h) = [2(h0 + Oh) -9 03 ] (8-Hm/~h) , 

O (~/m+2/a,) I.=o = [2(hO + Oh) + 03I (SHm/Su) I,=o 

+(h'O + Oh') (8-Hm/Sh) , 

: (: °o) ) \Snm+l/Sh 
Thus, when 

m = 2 n + l ,  n E Z +  , 

from formulae (2.71), (2.70a), we get 

ut[u---o = O ( SH2n+e/ Sh ) lu=O = 0 , 

(2.70a) 

(2.70b) 

(2.70c) 

(2.70d) 

(2.70e) 

(2.71) 

(2.72) 

(2.73) 

so that {u = 0} is indeed an invariant submanifold. From formulae (2.71) and (2.70b,c), 
we obtain 

h,l,=o =0 (SH2,+218u) lu--o =0½ (8-H2,+318h) 

= (hO + Oh + ½ 0 3 ) ( ~ 2 . + , / 8 h )  , 

which is eq. (2.68). 
Similar results can be derived for the nonabelian integrable systems of the preceding 

subsection. 

Theorem 2.3. (i) The o-mDWW system 

(v),  (-2tu,o 1 +ol ,o 
V = - [ V ,  ] - ½01 ~ 8 / S V J q ~ ( I ' ( 2 n + l )  (2.74) 

has the invariant submanifold defined by 

U = o~ , (2.75) 

on which it becomes 

= ( - [ V ,  ] - ½01)~-~V ( ~ 2 B ( l ) ( ' n 2 n + l ) )  . (2.76) V, 

(ii) The map ~ 0 )  on the submanifold {U = oJ}: 

~(z)(h) := 4'(l)(h) [v=~,= OtV ' - V t v ,  (2.77) 

is a Hamiltonian map into the second Hamiltonian structure of the KdV hierarchy 
(2.68): 

ht = (h0 -b Oh -b 103)(6-H2n+l/~h) . (2.78) 



[by (2.70b) ] 

[by (2.70a) ] 

Hence, from (2.74), 
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Proof  (i) By formulae (2.50) and (2.46), 

= 0t4~(1)(0) = to . (2.79) 

U=w = / ~ ( 1 )  (H2n+l) ) =O) (2.80) 
Ur 0 ik 8U v=o, ' 

so that U = to indeed defines an invariant submanifold. 
(ii) From formulae (2.50) and (2.52) we have 

t%0(1) ('n2n+l) t~tibl ( n2n+ 1 ) / -- f ~'n2n+l x~ 
- . + 2 V ) * ( 1 ) ~ - - - ~ - - - - )  , ( 2 . 8 1 )  

6V 6V u=~, = - ( Oa 

since letting U vanish does not interfere with taking variational derivatives with respect 
to V. Hence, from the second row of formula (2.74) we conclude that 

= ( - i v .  1 - 

which is (2.76). Then a-computation similar to the one at the end of subsection 2.1 
shows that 

- ~ ( 1 ) ( h e + a h + l O 3 ) = D ~ ( 1 ) ( h ) ] ( - [ V ,  I - ½el) { D [ ~ ( , ) ( h ) l }  t . (2.82) 
[] 

It follows from Theorem 2.2 that condition (2.75) picks out the flows of eq. (2.76), 
which are the g-mKdV flows constructed in [Ku2]. 

The problem of specialization is slightly different for the t~-m2DWW hierarchy, defined 

by 

(.),=( - 
V - [ U ,  1 + 0 1  - I V ,  ] \t$/aV/¢ib(0)('F/m)" 

(2.83) 

TO begin with, the hierarchy related to it by the map q~(0): 

( o o. 
h = uO +02  h a + 0 h  6 ~ 6 h i  (7"tin), (2.84) 

has an invariant submanifold defined by 

u + 2h = 0 (2.85) 

for all m --= l (mod 2). This follows from the equality 

b'7-12n+l/6h = 2o~2n+l/6u on {u + 2h = 0} (2.86) 
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(see [R]).  Fixing n and defining 

"~n :~- O~2n+l/t~U]u+2h=O , (2.87) 

we obtain from formula (2.62) that on the submanifold defined by 

F := Ot(U + 2V t) + 2UtV = 0 , (2.88) 

which is the image under the homomorphism ¢'<0) (2.43a, b) of the invariant submanifold 
determined by u + 2h = 0, we have 

t~4~0) (7"/2n+1)/~Ulr=o = X,(O + 2V),  (2.89a) 

t54~0) (7~2,+1)/SVIr_--o = 2X,  U - 2X~nO . (2.89b) 

Hence, on the submanifold defined by F = 0, our g-mZDWW system (2.83) becomes 

Ut = 2X'~[U, O] + (2X,  U - 2X 'O) ' ,  (2.90a) 

V, = Xn[O, U] + 2X~[V, O] + [Xn(O + 2 V ) ] ' .  (2.90b) 

Proposition 2.4. The flow determined by (2.90) leaves the submanifold defined by F = 0 
invariant. 

Proof From (2.90a,b), we obtain 

r ,  = 2 x . r '  + 4X'nF. (2.91) 
[] 

Remark 2.4. The constraint F = 0 in (2.88) is differential and cannot be resolved 
algebraically, except in the classical case when 0 = R1 and 0 = 1, resulting in the 
formula 

U = - ( 1  + 2 V ) - l V ' =  [-~ln(1 +2V) ] '  , (2.92) 

so that one is dealing with the potential mKdV hierarchy. 

2.4. Integrable systems on T*G 

From formula (1.10d) for the vector field Xn of the Hamiltonian H(g, lz), the 
equations of motion may be expressed as 

\ 6H/61x J ' (2.93) 

where the Hamiltonian matrix B k is 

- R g  [1~ + kg-~g ', . ] + kO ' (2.94) 

and the notation Lg. and R~ signifies left (resp. right) multiplication of the g element 

6I-I/8t~ (resp. the Tg*G element 6I-I/~g) by g. The integrable commuting hierarchies 
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constructed in the previous subsections generate commuting hierarchies on T*G by 
• /k* 

pulling back those on dlffl~,~ ) under the Poisson maps (1.77), (1.107) of Section 1, 
For the case (a )  = (0), the commuting system of Hamiltonians is generated by 

{(3LA)*~b~o)(7~,)}. For n = 1, by formula (2.58), we have q~0)(½7"/1) = q~0)(h) 
UtV. Since, by formula (1.46), 

( j I~A) . (U)  =g, g - I  , 

( jLA)*(V) =glxg -1 , 

we find that 

t3 / t~g( jLa)*(UtV)  = (--/z' + [ /z ,g- lg  ' ] ) g - l ,  

t3/ Stz ( jLA ) • (U tV)  = g- lg t  , 

and the equations of motion (2.93), (2.94) yield 

(2.95a) 

(2.95b) 

(2.96a) 

(2.96b) 

(2.97) 

which is just the tr-shift, as expected. For all the other Hamiltonians ~n, we let: 

N t  N t  6~0)  ( ~ , )  =: a ,6U + b n 6 V .  (2.98) 

Thus, e.g., fi2 and b2 are given by the components of the vector (2.63). Denoting 

a,  := ( jLa ) . ( f i , ) ,  b, := (f l .A).(~,)  , (2.99) 

we find that 

~g (JLA)*qO~0) (7-fn) = g - l [ g l z g - l , b n ]  ( g - l a n ) ~ - g - l a , g ~ g - l ,  (2.100a) 

~ (JLa)*qbC0) (~n)  = g - l b n g  (2.100b) 

so that the equations of motion on T*G for the Hamiltonian (fl~A)*4~0)(~,) are 

= b ,g ,  (2.101a) 

[~ = - ( g - l a n g ) l  . (2.101b) 

Next, consider the case (a )  = (1). Here we get the infinite commuting hierarchy 
{(3kL~)*q~)(H,)}, where j~R is given by formula (1.23): 

( j L R ) . ( ~ )  =gl.tg-i  , U := ½U, (2.102a) 
1 (a~LR)*(V) = - l ~  + k g - l g  ' , k =  ~ . (2.102b) 

For the Hamiltonian Hi = h, we have from (2.42b) that q~l)(H1) " UtU - VtV, so 
that 
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~q~o)(Hn) =: ~ tn~  + btn6V , 

~ = 2 ~ ,  ~ = - 2 V .  

Denoting 

2. := (j~.R).(~.),  ~. := (jLR).(~.) , 

we get from formulae (2.102a,b) 
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(2.103) 

(2.104) 

(2.105) 

~g (J~R)*q~(l)(Hn) =g-l  [gixg-l ,~,]  _ k(~n + [g-lg,,'~,] )g-t  (2.106a) 

8-~-( J~ R) *~0 ) ( Hn) = -bn "~- g-l'dng , (2.106b) 
~SIX 

and formula (2.93) yields the following Hamiltonian equations on T*G for the Hamil- 
tonian (j~R) *q~(1) (Hn): 

= "dng - gbn , (2.107a) 

12=k(g-l 'dng)'+ [bn'ix] -4- k[g-lg',g-l'dng], k = ½ . (2.107b) 

In particular for n = 1, substituting formulae (2.104) and (2.102a,b) in (2.107a,b), we 
get the o'-shift flow, as expected. 

2.5. WZW model [Wi, b'T, HI 

For the 3-parameter family of Hamiltonians on T'G, 

H = f [cq (Ix, U) + tr2(a2,g-lg ') + a3(g-lg' ,g-lg')] do' ,  (2.108) 

we have 

6H/Og = - { ( 2 a 3 g - l g  ' + a2Ix)' + [g-lg,, ot2Ix] }g-~, (2.109a) 

~H/6Ix = 2oqIx + ot2g-l g t . (2.109b) 

The corresponding equations of motion, by formula (2.93), are therefore 

= 2al gIx + t~2g t , (2.110a) 

t2= ((2re 3 + o~2k)g-lg t + (a2 + 2oq k)ix} t + 2alk[g-lgt ,  Ix] . (2.110b) 

Eliminating the momentum Ix from these equations gives the second order system 

1 (g - l g ) .=  (2a3 + ½ka2)(g- lg ' ) '+ ½k[g-lg, g- lg  '] . (2.111) 
2cq 

Hence, choosing 

oq =elk, a 2 = - e ,  a3=lek ,  e = 4 - 1  , (2.112) 
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we obtain the standard WZW system [Wi] 

(g-lg). (g- lg , ) ,  = e[g-lg,  g-lg,] . (2.113) 

The Hamiltonian H in (2.108) for these choices of the parameters al ,  a2, a3 is: 

Hwzw = ~ [(1~,~) + ( - I z + k g - l g ' , - t z + k g - l g ' ) ]  do ' ,  (2.114) 

which by formulae (2.102a, b), with k = 1 and e = 1, is 

i.e., the pull back of the Hamiltonian 

~Iwzw= i [IUtU "q- Vt'~)] do '= f [ (~r~  + VtV] do" (2.1 16) 

from (~ ~3 ~)^*. The corresponding equations of motion on (~ @ ~)^* are, by formula 
(2.33), just the usual left and right translational modes 

U' - -V '  U =  , V= . (2.117) 

Since the system (2.117) has integrals of the form 

El (U) + F2(V) , (2.118) 

with arbitrary o--independent Hamiltonians F1 and F2, the WZW system (2.110) has an 
infinite number of integrals of the form 

f IF1 (g/xg - l )  + + ½g-ig,)] do ' .  (2.119) F2 ( - / z  

These integrals commute, for distinct pairs (FI,F2) and (FI,P2), if (FI ,Pt )  and 
(F2, F2) separately do. Thus, we may choose them from any two commuting hier- 
archies on ~'^*. There is a distinguished such hierarchy; namely, the nonabelian mKdV 
hierarchy [ Ku2], obtained by pulling back the KdV integrals under the map @ of (2.27) 
with an arbitrary fixed 0 of length 1: 

q~(hn) =: h ° • (2.120) 

Hence, we have the doubly infinite commuting system on (~ ~3 ~)^* consisting of 
Hamiltonians of the form e, -- o2 { h n (U) + h m (V) }. This, in turn, furnishes the KdV-generated 
doubly infinite commuting hierarchy of Hamiltonians on T* G of the form { h°n ~ (gtzg-i ) + 
hOm2(_tz + ½g-lgp)}, which include the generator of the left-right translational flow 
giving the WZW model as its first element. 
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